skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Massey, C. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Denison, S.; Mack, M.; Xu, Y.; Armstrong, B. C. (Ed.)
    Spacing presentations of learning items across time improves memory relative to massed schedules of practice – the well-known spacing effect. Spaced practice can be further enhanced by adaptively scheduling the presentation of learning items to deliver customized spacing intervals for individual items and learners. ARTS - Adaptive Response-time-based Sequencing (Mettler, Massey, & Kellman 2016) determines spacing dynamically in relation to each learner’s ongoing speed and accuracy in interactive learning trials. We demonstrate the effectiveness of ARTS when applied to chemistry nomenclature in community college chemistry courses by comparing adaptive schedules to fixed schedules consisting of continuously expanding spacing intervals. Adaptive spacing enhanced the efficiency and durability of learning, with learning gains persisting after a two-week delay and generalizing to a standardized assessment of chemistry knowledge after 2-3 months. Two additional experiments confirmed and extended these results in both laboratory and community college settings. 
    more » « less
  2. Rogers, T. T.; Rau, M.; Zhu, X.; Kalish, C. W. (Ed.)
    Research has shown that estimation of correlation from scatter plots is done poorly by both novices and experts. We tested whether proficiency in correlation estimation could be improved by perceptual learning interventions, in the form of perceptual-adaptive learning modules (PALMs). We also tested learning effects of alternative category structures in perceptual learning. We organized the same set of 252 scatter plot displays either into a PALM that implemented spacing in learning by shape categories or one in which the categories were ranges of correlation strength. Both PALMs produced markedly reduced errors, and both led trained participants to classify near transfer items as accurately as trained items. Differences in category organization produced modest effects on learning; there was some indication of more consistent reduction of absolute error when learning categories were organized by shape, whereas average bias of judgments was best reduced by categories organized by different numerical ranges of correlation. 
    more » « less